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1 Introduction 

We introduce an implementation method of equilibrium-based volatility models for 

the rate of return of the market portfolio.1 Market portfolio’s return volatility models are 

increasingly central to financial risk management. Such models, for example, are important in 

determining Value at Risk or similar measures which, perhaps, all financial institutions use 

[see, for example, Wiener (1999), Crouhy, Galai and Mark (2001), Allen, Boudoukh and 

Saunders (2003), Jorion (2007)]. The models are, of course, also relevant for pricing 

derivatives. 

Why is it important and interesting to constrain the search of volatility models to 

equilibrium-consistent ones? Is it not just a handicap imposed for cosmetic reasons? Peacocks 

signal excess strength by channeling energy from building fighting prowess to building large 

heavy tails, which further handicap their fighting ability. Fast gazelles, facing predators, 

signal their quickness by stotting rather than running away (as slower gazelles do). Predators, 

in turn, do not chase stotting gazelles, preserving energy, as the stotting gazelles do, by 

avoiding fruitless chases.2 

While we would not argue with successful “black boxes,” we advocate building ones 

that are equilibrium consistent. This choice, we suppose, eliminates some irrelevant and 

inconsistent models. We hope that this paper demonstrates that choosing equilibrium-

consistent models is more similar to stotting gazelles’ equilibria, where both predators and 

potential prey save energy, rather than to peacocks/peahens equilibria where substantial 

energy is spent on building handicaps. 

The major role of volatility models is perceived to be prediction of market 

movements, particularly big ones [see, for example, Boudoukh, Richardson and Whitelaw 

(1997), Christoffersen and Diebold (2000)]. While one should not argue with demonstrated 

                                                           
1 We define “volatility” as a rate of return’s instantaneous variance. 
2 See, for example, Zahavi and Zahavi (1997).  
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empirical success of a model,3 careful search for equilibrium-based models that are both 

internally consistent and supported by valid preferences, might have a good chance of 

success.4 

Within the equilibrium framework adopted in Bick (1990), He and Leland (1993), Xu 

(2013),5 we study two families of equilibrium-based volatility models for the market portfolio 

rates of return:  one is a deterministic function of time, and the other is an inverse function of 

the ex-dividend value of the market portfolio (henceforth, “market portfolio value”). Both 

families of volatility models are standard in finance. They entail log-normal processes and 

square-root processes for the market portfolio value, respectively. The first family of 

volatility models is represented by three popular models in academia and industry 

(henceforth, “reference models”):  1) GARCH,6 2) RiskMetrics,7 and 3) piecewise constant 

volatility. The second family is a special case of the constant elasticity of variance models 

(CEV); see, for example, Cox and Ross (1976) and the sequel. Within the second family, we 

propose three new specifications motivated by the three reference models, respectively. Each 

specification combines parameterization of one reference model and the CEV formulation 

(i.e., as an inverse function of the market portfolio value). 

We show in theory that, under the common practice of assuming constant mean rates 

of return, the second family of volatility models has the features of allowing more flexible 

risk aversions and capturing “asymmetric volatility” [Black (1976)]. Thus, the second family 

tends to have more flexibility to approximate the market-implied risk aversion, and thus a 

                                                           
3 Friedman (1953). 
4 Naturally, volatility models are also used to explain asset returns and growth. See for example Schorfheide, 
Song and Yaron (2013). 
5  Following Bick (1990), He and Leland (1993), Xu (2013, Chapter 3) derived necessary and sufficient 
conditions for the market portfolio return process to be consistent with equilibrium under market clearing 
stochastic interest rates, supporting a larger family of equilibrium consistent specifications of mean/volatility 
structures. 
6 Generalized Autoregressive Conditional Heteroskedasticity [Engle (1982) and Bollerslev (1986)]. We use 
GARCH(1,1). 
7  We use the 1996 version [J.P. Morgan/Reuters (1996)], which can be viewed as a special case of 
GARCH(1,1), not the 2006 version [Zumbach (2007)]. 
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better ability to forecast, than the first family. To empirically test this hypothesis, we compare 

out-of-sample accuracy of one-day-ahead daily volatility forecasts produced by our proposed 

and reference models, in three evaluations of different time periods, using the Standard & 

Poor 500 (S&P500) Composite Index data. While our proposed models are as easy to 

implement, they outperform the reference models by standard predictability criteria, 

including 2R  of the Mincer-Zarnowitz (1969) type (henceforth MZ) regressions used by 

Andersen and Bollerslev (1998) (henceforth AB), and squared forecast errors, tested using 

Diebold and Mariano (1995) (henceforth DM) tests, during both “normal” and high-volatility 

periods, whether the market is rising or falling. 

To address potential non-stationarity of the market portfolio rates of return implied by 

the proposed models, we model a difference equation of the CEV volatility, 8  and use 

Maximum Likelihood method to estimate parameters. In our case, the Maximum Likelihood 

Estimator is still asymptotically unbiased and asymptotically normally distributed (see 

Bollerslev, Engle and Wooldridge (1988) and references therein). We adopt two standard 

model comparison methodologies. The first is MZ regressions used in AB and Andersen, 

Bollerslev, Diebold and Labys (2003), and the second is DM tests on squared errors.9 By the 

first model comparison criterion, the 2R  of regressions of realized volatility on forecasts (i.e., 

MZ regressions), our models outperform the reference models, typically by 5%-10%, in all 

three out-of-sample periods. By the second criterion, mean square error (MSE), our proposed 

models’ MSEs are typically 5%-10% lower, which is statistically significant. The DM tests 

also show that the outperformance mainly comes from high-volatility periods. Moreover, as a 

robustness check, we plot model forecasts vis-a-vis realized volatility for all holdout periods 

and visually assess model underestimation levels during high-volatility periods. While similar 

                                                           
8 We thank Frederik Lundtofte for suggesting that we emphasize this point. 
9 The forecast evaluation methodology of volatility models is an active research area. In this paper we employ 
the two classic methodologies, and we might incorporate more recent ones in future studies; for example, Patton 
(2011). 
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in “normal” periods, during high-volatility periods, the reference models typically 

underestimate realized volatility by 30%-60%, and ours are typically better by 10%-20%. 

We advance the market risk modeling literature by introducing an approach of 

developing equilibrium-based volatility models of the market portfolio rates of return. We 

find empirical support for our approach by improving the predictive power of extant models 

without increasing implementation costs. Our approach paves foundations for creating new 

models along this line. 

In addition, we provide a new way to analyze and extend current popular volatility 

models, within an equilibrium framework, thus facilitating insights into the predictability of 

volatility models. Although the families of volatility models studied here are not uncommon, 

to our best knowledge, we are the first to analyze them within an equilibrium framework and 

compare their empirical performance accordingly. 

Our paper also contributes to the literature that tries to combine the CEV-type and 

GARCH-type volatility models; see, for example, Fornari and Mele (2006). Our approach of 

combining GARCH and CEV is different from theirs. It accommodates compatibility with 

equilibrium and its efficacy is demonstrated by empirical evidence. 

Section  2 introduces our equilibrium framework and proposed models. Section  3 

describes the estimation procedure, the out-of-sample forecasting procedure, the evaluation 

methodology, and the data. Section  4 presents empirical results. Section  5 concludes. 

2 Equilibrium-Based Volatility Models 

In this section, we identify two families of volatility models that are consistent with 

equilibrium. Recognizing that the three reference models, which are popular in academia and 

industry, belong to the first family, we propose three specifications in the second family, each 

corresponding to one of the reference models. 
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2.1 Equilibrium-Consistent Diffusion Return Processes of the Market Portfolio 

We first describe the framework adopted in He and Leland (1993), Xu (2013). We use 

their necessary and sufficient conditions for the return process of the market portfolio to be 

consistent with equilibrium. 

In a continuous-time, frictionless, fully divisible securities market, over a finite time 

horizon, there is a single source of uncertainty, Z , , }{ t tZ Z  , 0 0Z  , a Wiener process 

defined over a complete probability space ( , , )P   with a non-decreasing right continuous 

family of sub--algebras { , 0 }t t T  . There is a riskless asset, at zero net supply, and a 

risky asset, at unit net supply (the market portfolio), whose ex-dividend value at time t , 

[0, ]t T , tM , is { }t –adapted and evolves as an Itô diffusion. Thus, it is a (strong) solution 

to the following stochastic differential equation: 

 ( , ) )= + ( ,t
Et

t t
t

dM
dtM t M t dZ

M
  , (1) 

with an initial condition 0M , where, ( , )E
tM t  and 2 ( , )tM t  the instantaneous mean and 

volatility of the ex-dividend rate of return, are twice continuously differentiable scalar 

functions with respect to tM  and t . We also assume that the market portfolio pays a 

continuous dividend yield ( , )tM t ,10 which is continuously differentiable with respect to tM  

and t , and satisfies ( , ) [0,1),tM t t T     and ( , ) 1TM T  . We require that ( , )E
tM t , 

2 ( , )tM t , and ( , )tM t  satisfy Lipschitz and growth conditions [see Liptser and Shiryaev 

(2001, pp. 134-135)] to guarantee a solution to Equation (1) and that this solution be non-

negative; that is, 0,tM t  . Note that this market is dynamically complete. 

A representative investor who lives on [0, ]T  is endowed with an initial wealth of 0W , 

0 0W M , and maximizes a time-additive, state-independent Von Neumann-Morgenstern 
                                                           
10 Thus, ( )E

t t   is the instantaneous expected total rate of return of the market portfolio. 
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utility of lifetime consumption, ( , )tU C t , by allocating his/her wealth, tW  (the total wealth in 

the economy) to consumption and investments in the risky and riskless assets. This is a 

version of Merton’s (1971, 1973) problem. 

We set the instantaneous riskless interest rate, r  (henceforth, “interest rate”), to clear 

the market where the investor’s optimal weights in the risky and riskless asset are (always) 1 

and 0 respectively, and set ( , )tM t  to equal the investor’s optimal consumption rate. In other 

words, the investor liquidates his/her wealth, in the form of dividends, at his/her optimal 

consumption rate. In equilibrium, r  is a function of ( , , )t tW M t  [see, for example, Cox, 

Ingersoll, and Ross (1985a,b)]. Because tW  is a deterministic function of tM , (particularly, 

t tW M ), we can write r  as a function of tM  only; that is, ( , , ) ( , , )t t t tr r W M t r M M t  . 

We define f , 2

)( E r
f

 

  , and a similar argument allows us to also write it as a 

function of tM  only, ( , )tf f M t . 

The necessary and sufficient conditions for the process { ,  0, [0, ]}t tM M t T    to 

be consistent with equilibrium are [see He and Leland (1993), Xu (2013, Chapter 3)] 

1. 2 21
[ ] ( 1) 0

2
E t

M M MM M MM

f
f M f f f M f r f

M
f           , (2) 

and 

2. there exists an increasing and concave utility function ( , )tU C t  such that f  satisfies 

 

,
( , ) ( )

,

,

( )

( )

( )

(
( , )

),

C

CC
M

CC

C

M t
f M t M M

M t

M T
f M T M

M T

U

U

U

U

    

  


. (3) 

where in Equations (2) and (3) subscripts denote partial derivatives and, for simplicity, we 

suppress the time subscript of tM . 
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2.2 Two Families of Equilibrium-Based Volatility Models 

The above equilibrium framework and conditions per se do not entail any particular 

functional form of ( , )E
tM t , 2 ( , )tM t , ( , )tM t , and ( , , )t tr M M t . They only impose 

(minimum) restrictions that any specification needs to abide by. Hence, this framework 

provides much freedom for econometricians to create volatility specifications. In order to 

conduct empirical study, econometricians need to specify, at least, ( , )E
tM t  and 2 ( , )tM t . 

In this paper, we consider constant instantaneous mean rates of return (i.e., ( , )E
tM t  , 

where   is a constant over time), and the following two families of volatility models: 

1. 2 ( , ) ( )t tM S t  , i.e., volatility as a deterministic function of time, and 

2. 2 ( )
( , )t

tM

S t
tM  , i.e., volatility as an inverse function of the market portfolio value, 

where ( )S t  is a positive, bounded and differentiable function of time. 

The “constant mean” assumption is consistent with standard practices in the market 

risk measurement literature. These practices demean the return time series and estimate the 

volatility as if the conditional mean rates of return are zero [see, for example, Christoffersen, 

Hahn and Inoue (2001)]. In order to have fair model comparisons, we make this assumption 

for all volatility models studied here. 

Both families of volatility models are standard in finance. As we will show in the next 

section (Section  2.3), the first family, as a deterministic function of time, is represented by 

three popular models in academia and industry, GARCH, RiskMetrics, and piecewise 

constant volatility. The second family is a special case of the constant elasticity of variance 

(CEV) models; see, for example, Cox and Ross (1976) and the sequel, which are also not 

uncommon. 

Both families can be consistent with our equilibrium framework. For example, the 

first family can induce preferences with Constant Relative Risk Aversion (CRRA). In 
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particular, if the dividend yield is also a deterministic function of time, ( , ) ( )tM t t  , in 

view of Equation (3), 

 
2

( )

(

,( )

( ) , )
C

C

C

C

E
C CM tt r

f M C
t M t

U U

U U

   

 

      , (4) 

where   is the coefficient of RRA. Thus, as long as  E r   is a deterministic function of 

time, then ( )t   is not a function of C . In other words, this family of volatility models 

can be supported by CRRA preferences.11 The second family can induce preferences with 

Constant Absolute Risk Aversion (CARA), as shown in the next proposition. 

Proposition 1. The following specifications of the market portfolio rates of return are 

consistent with equilibrium in the economy, described in Section  2.1, where the investor has 

CARA preferences. 

The volatility of the market’s portfolio rates of return is 

 2 ( )
( , )t

tM

S t
tM  . (5) 

The (ex-dividend) mean of the market portfolio rates of return, interest rates, and dividend 

yields are, respectively, 

 ( ,

1 log log
( , ) ( ) ( ) ( ) ( )

2

( , , ) ( ) ( )

) (

( )[1 ( ]

)

)

E E

E

t

t

t t

M

M t

d d
t t t S t t

dt dt

r t r t t

t

M t SM t

    



  









   

   



, (6) 

where ( )t  is a function of t  satisfying ( ) [0,1),t t T     and ( ) 1T   (which becomes 

the equilibrium consumption rate), and ( )t  is a positive function of time (which becomes the 

absolute risk aversion (ARA) coefficient of the utility function). 

                                                           
11 In this case, in light of Equation (2), 

(1 )
t

Mr M







. Hence, r  and E  can both be some logarithmic 

functions of tM . 
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Proof. It suffices to show that the specifications in Equations (5) and (6) satisfy the 

conditions in Equations (2) and (3). One can verify that Equation (2) holds by direct 

substitution. Substituting the definition of f  in Equation (3), recalling that ( ) 1T  , implies 

that the ARA coefficient of the utility function is ( ), [0, ]t t T   , which is independent of 

wealth. See Equation (7) below. 

 2

( )) ,(
( , ) ( ) ( ) ( ),

,
[0, ]

( )t
C

C t

t
t

E
CU M tr

f tM Mt t t
M t

t T
U

    

 

      , (7) 

where subscripts of U  denote partial derivatives.  

While both families can be consistent with equilibrium and can induce reasonable 

preferences, when used together with the “constant mean” assumption, the second family 

tends to gain more advantages, in terms of the flexibility to approximate the market-implied 

risk aversion and thus the ability to forecast. 

The first family together with the “constant mean” assumption might induce more 

restricted preferences. For example, in Equation (4), if ( , )E M t  , then ( )r r t , and the 

equilibrium condition in Equation (2) becomes 0
)

0
(1

t
MrM

d

dt

 


   


. Hence, the 

RRA coefficient,  , must be constant over time. In contrast, as shown in Proposition 1, even 

if dividend yields (which are also the optimal consumption-to-wealth rates) and interest rates 

are deterministic, the second family together with constant mean still allows the ARA 

coefficient, ( )t , to be (deterministically) time-varying.12 

Moreover, the second family features “asymmetric volatility” [Black (1976)], a well-

known stylized fact that can be observed under the “constant mean” assumption.13  The 

                                                           
12 When interest rates are deterministic, as in these cases, the specifications also satisfy the conditions of He and 
Leland (1993). 
13 This stylized fact is that the volatility moves asymmetrically with the security value (or price), i.e., the 
volatility is higher when the value falls than when it rises. This phenomenon was explained by Black (1976) as 
the “leverage effect.” Nonetheless, to our best knowledge, it is unknown in the literature whether it can be 
observed when stochastic mean rates of return are modeled. 
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asymmetry of volatility is captured by the inverse function of tM , even though this 

functional form is motivated by the compatibility with CARA preferences, not by 

“asymmetric volatility” alone. 

Finally, the major problem with CARA preferences is lack of wealth effect in ARA. 

This is less a problem over short time intervals, like days or weeks, because the wealth of the 

representative investor does not change much, and hence does not impact ARA much. Thus, 

CARA preferences, especially with time-varying ARA, might approximate real-world 

markets reasonably well. 

To shed further light on both families of volatility, substituting ( , )E M t   and 

2 ( , )tM t  into the dynamics of the market portfolio value, tM , we note that under constant 

mean rates of return, tM  follows log-normal processes using volatility in the first family, and 

follows “square-root” processes using volatility in the second, as shown below, 

 = + ( )t t t tdM M dt S t M dZ . (8) 

Equation (8) ensures the non-negativity of tM , as desired. Therefore, here we effectively 

compare the empirical performances of log-normal and square-root processes of tM , with the 

former featuring symmetric volatility and the latter featuring asymmetric volatility, under the 

“constant mean” assumption. 

The above theoretical analysis yields empirically testable hypotheses regarding the 

forecast performance of the two families of volatility models, which are the major subjects of 

Sections  3 and  4. To test empirical forecast performance, we need to provide plausible 

parametric specifications in the second family. 

2.3 Parametric Specifications 

We first recognize that the three reference models are, in fact, parameterizations in the 
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first family of volatility models. Denoting 1

1

t t
t

t

M

M
y

M 



  as the realized rate of return at 

time t , the reference models are 

Reference Model 1, GARCH(1,1):   2 2
01

2
1 2 tt ty        , (9) 

where  , 0 , 1  and 2  are positive constants estimated from the data. 

Reference Model 2, RiskMetrics:   22 2
1

1

ˆ ˆ0.94
1

0.06 ,
t

t
t

t st
s D

yy
D

   
  

     , (10) 

where D  is the estimation sample size (in number of periods). 

Reference Model 3, “Moving Average”:  2 2

1 1
1

1
ˆ ˆ( ) ,

1
ˆ

s t N

t

t N
s

s

t

t sy y
N N

  
     

    , (11) 

where N D  is the sub-sample size for estimation (in number of periods). RiskMetrics can 

be viewed as a special case of GARCH(1,1), with 1 2 1    and 0 0  . Because of this 

property, RiskMetrics is also known as an “Integrated GARCH(1,1)” model or the 

“Exponentially Weighted Moving Average” (EWMA) model. We call the third reference 

model “Moving Average” because it is effectively the N -day-moving average of the squared 

(demeaned) returns. 

These models are standard benchmarks used for model comparisons; see Boudoukh, 

Richardson and Whitelaw (1997), Christoffersen and Diebold (2000), Christoffersen, Hahn 

and Inoue (2001). They are also widely used in practice; see, for example, Phelan (1995), 

Litterman and Winkelmann (1998), and BCBS (2011). As shown below, they can all be 

viewed as discretized versions of volatility models in the first family, 2 ( , ) ( )t tM S t  , with 

certain functional forms of ( )S t . 

For the first reference model, Corradi (2000) showed that the continuous time limit of 

the GARCH(1,1) process is the following ordinary differential equation (ODE):14 

                                                           
14 With appropriate initial conditions. 
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  0 1 2( ) ( 1) ( )dS t S t dt      , (12) 

whose solution is obviously a deterministic function of time.15 The second reference model, 

RiskMetrics, can be simply viewed as a special case of GARCH(1,1) with certain pre-defined 

parameter values, 0 0  , 1 0.06  , 2 0.94  , and 
1

1 t

s
s t D

y
D


  

  . For the third reference 

model, expressed in Equation (11), we recognize that it is the Maximum Likelihood 

Estimator (MLE) of piecewise constant volatility, using a sub-sample of N  periods, i.e., 

2 ( , ) ( )t t S SM t   ,where S  is a positive constant. 

The above analysis of the reference models has direct implications for 

parameterizations in the second family of volatility models, i.e., a CEV model. Instead of 

thinking of ( )S t  as volatility, we take it as a component of volatility in the second family, 

2 ( )
( , )t

tM

S t
tM  . Thus, the functional forms of ( )S t  implied by the three reference models 

directly lead to three new parametric specifications in the second family. They are our 

proposed models, as presented below. 

Model 1:   22 2 2 20
1 1

1
1 1 2 1 1t t t t

t
t ty y y

M

     


          , (13) 

Model 2:  
2

2 2 2 2
11 11 1

1

0.9
1

0.06 4
D

t s t tt t
s

ty y y y
D

    



     
 

   , (14) 

Model 3:  2

1
t

t

S

M




 . (15) 

Model 1 is created by combining a CEV formulation and GARCH(1,1): 

                                                           
15 The limit of the GARCH(1,1) process may not be unique. For example, the well-known result of Nelson 
(1990) showed that in the limit it becomes a stochastic volatility process. We use Corradi’s (2000) result 
because the Euler discretization of Equation (12) leads back to GARCH(1,1). For more detailed discussion, see 
Singleton (2006, Chapter 7, pp. 177-178). 
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 0 2

2

1

( )
( ,

(

)

( ) 1) ( )

t
t

M
M

d

S t

S t S t dt

t

  




 



  

. (16) 

We can simplify Equation (16), by differentiating 2 ( , )tM t  using Itô’s formula, substituting 

Equation (12), and rearranging: 

 

2 2

2

2
1 2

3

20

( ) ( ) ( )
( )

( 1) .

t
t t

t t t t

t t
t t

t t t

dMdS t S t S t
d dM

M M M M

dM dM
dt dt

M M M



  

  

 


 
   
 

 
 




 (17) 

Noting that  2
2

2 t
t t

t
t

dM
t dd Z dt

M
  

 



 


 , we can further rewrite Equation (17) as 

 
2 2

2 2 2
1

0
2( 1)t t t

t t t
t t t t

dt
dM dM dM

d dt dt
M M M M

    
   

       


 
  
    

. (18) 

Applying Euler discretization to Equation (18) using the lagged information set,16 we obtain 

Model 1 of Equation (13), in discrete time, where all parameters are to be estimated from the 

data. Note that Model 1 is obtained from a first-order difference equation of the CEV 

volatility, Equation (18), rather than the CEV volatility itself, Equation (5). This treatment 

addresses potential concerns on the existence of the long-run (or unconditional) mean of the 

CEV volatility processes.17 

If we set  , 0 , 1  and 2  as pre-defined constants, as in RiskMetrics, 0 0  , 

1 0.06  , 2 0.94   and 
1

1 t

s
s t D

y
D


  

  , we obtain Model 2 of Equation (14).18 

                                                           
16 Note that in discretized versions, tM  becomes 1tM  . 
17 Equation (13) might be used to identify the conditions under which the long-run mean of Model 1 exists, 
see  Appendix A. We also note that the volatility in all the models considered in this paper is conditionally 
deterministic. In other words, conditioning on the lagged information set, the (following) volatilty is known and 
the error terms are i.i.d. Therefore, the non-stationarity of the volatility process is of less a concern when 
Maximum Likelihood method is used, as described in the next section. 
18 Note that we could have fine-tuned the parameter values of Model 2 because of its different functional form 
from RiskMetrics. Here we adopt the values from RiskMetrics for simplicity. 
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For Model 3, in the spirit of the “moving average” model, we choose ( )S t  to be a 

constant, ( )S t S , over a sub-sample of N  periods, giving rise to the parameterization in 

Equation (15). 

Parameterizations are of course not unique. Here we propose three specifications in a 

way that is directly analogous to the reference models, and requires no additional 

implementation cost due to the functional similarity between the proposed and reference 

models. Indeed, the number of parameters in our models is the same as that in the reference 

models, and the econometric methods required to estimate parameters are also the same.19 

However, the estimated parameter values, the volatility forecasts, and their empirical 

implications are greatly different. We provide further insights into our proposed models using 

Model 1 as an example. 

Model 1 looks similar to GARCH(1,1). However, we stress that it is not created by 

nesting GARCH, but by “borrowing” GARCH as one component in its specification. This is 

a new, nonstandard approach to invent models. One distinction between Model 1 and 

GARCH(1,1) is the extra addend of 2 2
1 11t t ty y      , which is a consequence of the second-

order Taylor expansion of the inverse function of tM  in Itô’s formula. This addend has the 

feature of capturing “asymmetric volatility.” To see why, we rewrite it as 

2 2
1

2
1 10.5)( 0.25t tty      . Therefore, as long as the lagged realized rates of return, 1ty  , is 

below 50%, which is true at daily or weekly frequencies, ceteris paribus, the higher the 

return, the lower the next-period volatility, and vice versa. Furthermore, in this model, we 

require 2 0.25   to ensure the positivity of the volatility forecasts. We find in empirical 

study that the unconstrained estimate of 2  always satisfies this condition. Finally, there may 

                                                           
19  Fornari and Mele (2006), for instance, used Nelson’s (1990) interpretation of GARCH(1,1) and, thus, 
required more sophisticated econometric methods like Indirect Inference. 
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also be a concern about the term of 0

1tM





, which can cause volatility to explode if 0tM  . 

When this happens, the squared-root processes in Equation (8) imply that the economy stops. 

Otherwise, the assumed Lipschitz and growth conditions ensure that 2 ( , )tM t    when the 

economy is running. In empirical study, the absolute level of tM  is meaningless. Hence, we 

always normalize it to 1 at beginning of each estimation period. This treatment also avoids 

the potential explosion issue. 

The analogs in the parameterizations, in terms of ( )S t , provide a natural 

correspondence between our proposed models and the reference models:  Model 1 vs. 

GARCH(1,1), Model 2 vs. RiskMetrics, and Model 3 vs. the “Moving Average” model. 

Therefore, in empirical study, we compare our models’ forecast performance to that of their 

corresponding reference models. Such model comparisons are effectively between the two 

families of volatility models because the specifications of ( )S t  are the same across, 

correspondingly, our model and the reference models. 

It might also be interesting to compare the empirical performances between our 

models and models that are purely designed to capture “asymmetric volatility” and are not 

necessarily consistent with equilibrium. This comparison requires separate, full-blown 

empirical work, which we defer to future study.20 

Our approach, to create new models in the second family, can be generalized. If a 

volatility process is recognized as a deterministic function of time, ( )S t , we can easily create 

a corresponding new model using Equation (5), as we have done here. 

                                                           
20 However, we stress that our focus is on equilibrium-consistency of modeling practices rather than capturing 
“asymmetric volatility” (leverage effect) alone, because the latter may have less significant implications. For 
example, it is still an open question whether leverage effect exists if stochastic conditional mean rates of return 
are modeled. 
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3 Estimation Procedure, Forecast Evaluation Methodology, and Data 

In this section we describe the volatility models’ parameter estimation methodology, 

forecast evaluation methodology, and the data we use. 

3.1 Parameter Estimation 

We use the Maximum Likelihood method to estimate parameters in our proposed 

models, where required, because, in our case, the MLE can be shown asymptotically 

unbiased and asymptotically normally distributed (with the asymptotic covariance matrix), 

under standard regularity conditions [see Bollerslev, Engle and Wooldridge (1988) and the 

references therein]. 

For Model 1’s reference model, GARCH(1,1), we use the well-known Maximum 

Likelihood estimation procedure [Engle (1982), Bollerslev (1986)]. For Model 1, we use a 

similar procedure to identify the MLEs, described in  Appendix A. 

For Model 2 and its reference model, RiskMetrics, no estimation is required. 

For Model 3’s reference model, the “Moving Average” model is in fact the MLE of 

piecewise constant volatility using a sub-sample of N  periods, as discussed earlier. We 

derive a closed-form expression, shown in  Appendix A, for Model 3’s MLE of the 

parameters, ˆMLES  and ˆ MLE . Using them, Model 3 of Equation (15) becomes 

Model 3:  

1
2

1
2

1

ˆ( )
ˆ

t

s

t
t

s
s t N

y M

NM










 


, (19) 

where 

1

1

1

1

ˆ
s

s t N

s
s t N

t

s

t

My

M





 


 





. We set 10N   for both Model 3 and the “Moving Average” 

model.21 

                                                           
21 The choice of N  is arbitrary. We conjecture that it is less relevant to the model comparison we are interested 
in here because both models adopt the same value. 
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As an example, we present MLEs using the daily return data of S&P500 Composite 

Index during the period from July 1, 1997 to June 29, 2007. The data will be described in 

Section  3.3 below. Note that Model 3 and its reference model use only the data of the last 10 

trading days in the estimation sample (i.e., the data from June 18, 2007, to June 29, 2007). 

 The MLEs for the reference models are as follows, with standard errors in 

parentheses: 

GARCH(1,1):   7

6
1

(0.016

2
2

9) (0.0002) (0.0163)(7.

2

09 10 )
1.74 10 0.0915 0.0005 0.8972t t ty 







    , (20) 

 “Moving Average”:  
5

5
1

(0.0022)(2.0771 )

2

10
4.6445 10 , -0.0019ˆ ˆt 







  . (21) 

The MLEs for the proposed volatility models are22 

Model 1:   7

6

(9.92 10 )
1 1 1 1

(0.0208) (0.0002) (0.0208)

2
2 2 2 2

1 1
1

3.18 10
0.1455 0.0005 0.8540( )t t t tt t

t

y
M

y y  





  


    


    , (22) 

Model 3:  
5

5
1

(0.0022)(2.0956 )

2

10
4.6859 10 ,  -0.002ˆ ˆt 







  . (23) 

All the parameters (except for ̂  in Model 3 and the “Moving Average” model) are 

significantly different from zero at the 5% significance level using the standard t- or z-tests. 

We also note that, like GARCH(1,1), the sum of the three parameter values in Model 1 is also 

close to 1; nevertheless, they are quite different from those of GARCH(1,1). The difference 

can also be seen from the in-sample estimates of volatility during this period in Figure 1, 

where the estimates of both models are plotted with vertical axis labeling on the left (red and 

blue with triangle markers and lines, respectively) and actual daily rates of return are plotted 

labeling on the right (grey dotted line). Therefore, one expects that the two models produce 

different daily volatility forecasts, as we will demonstrate later. 

                                                           
22 In Model 1, we show 2

1ˆ t   instead of Ŝ  to draw an analog to the “Moving Average” model. 
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Figure 1:  In-sample estimates of daily volatility, Model 1 vs. GARCH(1,1) 

 

3.2 Forecast Evaluation23 

We compare all models’ performance of one-day-ahead daily volatility forecasts. We 

adopt the setup of the forecast evaluations as in AB and Andersen, Bollerslev, Diebold and 

Labys (2003) and describe it below. 

We first create holdout samples using the daily realized rate of returns of the market 

portfolio. Next, we use each model to produce a one-day-ahead forecast for each day in the 

holdout samples.24 Last, we evaluate the forecasts using the realized volatility of the holdout 

samples. 

The realized volatility is the sum of squared intraday returns, obtained by aggregating 

                                                           
23 “Forecast evaluation” is also frequently referred to in the literature as “back-testing.” We use this terminology 
following AB and Andersen, Bollerslev, Diebold and Labys (2003). 
24 We give each model a sample of D  daily (actual) returns immediately prior to each holdout observation (i.e., 
a rolling time window of size D ). Each model then estimates the parameters using the D -trading day sample 
and produces a volatility forecast for the next day. We set 2500D  . 
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five-minute rates of return within each day and overnight. Where the intraday data is not 

available, we use the squared daily rates of return. 

To evaluate volatility forecasts, we adopt two standard evaluation criteria:  2R  of the 

evaluation regressions (henceforth “ 2R ”) and mean square error (MSE). 

2R  is obtained by regressing the square roots of realized volatilities onto a constant 

and the square roots of forecasts (i.e., MZ regressions): 

 1/2 1/2
1 0 1 1| , 1( ) ( )t t t Model tv b b v u     , (24) 

where 1tv   is the realized volatility as described above, 1| , t t Modelv   is the one-day-ahead 

volatility forecast of a model, and 1tu   is the regression error term. This is our first criterion 

to evaluate the forecast performance of the volatility models (see AB’s justification for 

that).25 

Our second criterion is the forecast MSE,26 
21/2 1/2

1| , 1
1

1
( ) ( )

H

t t Model t
t

MSE v v
H  



   , 

where H  is the holdout sample size. This criterion assesses overall forecast errors and thus 

provides a measure of how “far away” the forecasts are from realized volatility. It 

corresponds to a special case of 2R , where the regression coefficients, 0b  and 1b , are set to 

zero and one, respectively. While 2R  tends to ignore the average bias, the MSE reflects both 

bias and variance; according to the standard decomposition, 2MSE Bias Variance  .27 The 

decomposition also allows us to trace the sources of MSE differences. We test MSE 

differences using a Diebold-Mariano [Diebold and Mariano (2002), DM] test. 28 We also 

conduct DM tests, using the “squared error” loss function, to assess the statistical significance 
                                                           
25 The population 0b  and 1b  should be zero and one, respectively. However, “Errors-In-Variables” issues bias 

the regression coefficients estimators in MZ regressions, Equation (24). Following AB we use only the 2R  
criterion. 
26 The MSE of the out-of-sample forecasts (i.e., the forecasting errors), while commonly used in statistical 
predictive modeling, is not commonly used in the volatility literature. 
27 We thank Wayne Ferson for suggesting the motivation of using the MSE. 
28 We thank Jonathan Reeves for suggesting the DM tests. 
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of performance difference during high-volatility and “normal” periods, respectively. 

Moreover, as a robustness check, we plot model forecasts vis-a-vis realized volatility 

for all holdout periods and visually assess model underestimation levels during periods with 

the highest realized volatility. We pay particular attention to this property because of current 

volatility models’ tendency to underestimate volatility during those crucial periods [see, for 

example, Christoffersen and Diebold (2000)]. 

3.3 Data 

We conduct forecast evaluations using ex-dividend prices of S&P500, which is 

commonly used in the risk-measurement literature [see, for example, Christoffersen, Hahn 

and Inoue (2001)]. Also, as a broad value-weighted index, it is an appropriate choice for our 

equilibrium framework. 

To minimize data-snooping bias, we use three holdout samples, in non-overlapping 

periods. Table 1 summarizes the size and time coverage of the three pre-holdout and holdout 

samples. As discussed before, we normalize the S&P500 “price” (or index level) to 1 at the 

beginning of each pre-holdout period. 

We summarize the statistics of the unconditional distributions of realized rates of 

return in Table 2. The return distributions in the holdout samples have high excess kurtosis 

(>0), a manifestation of the heavy tails reflecting big market movements (see Figure 2). The 

three holdout samples capture most of the major market swings in the last three decades. We 

number these swings in Figure 2’s Panel A, B and C and describe them in Panel D. Our 

holdout samples are, thus, a good test field for evaluating volatility models both in general 

and under big market movements. 

To calculate realized volatility, we need high-frequency data on the S&P500 Index, 

which we find for only the second and third evaluation periods. It is the intraday prices of the 
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SPDR S&P500 Exchange-Traded Fund (SPY).29 For the first period, we use the squared daily 

returns as realized volatility. 

We use DataStream’s S&P500 daily price data and the intraday price data of SPY 

from NYSE-TAQ (New York Stock Exchange Trade and Quote) in Wharton Research Data 

Services (WRDS). 

Table 1:  Holdout and pre-holdout samples: time coverage and sample size 

Holdout sample Pre-holdout sample coverage/size Holdout sample coverage/size 

1 July 1, 1977 – June 30, 1987:  2,515 July 1, 1987 – June 30, 1990:           757 
2 July 1, 1987 – June 30, 1997:  2,525 July 1, 1997 – December 31, 1998:  380 
3 July 1, 1997 – June 30, 2007:  2,515 July 1, 2007 – December 31, 2008:  380 

Table 2:  Holdout samples’ unconditional daily return distributions summary statistics 

Holdout sample Mean Std. dev. Skewness Excess kurtosis 

1 0.0216% 1.433% -5.656 89.764 
2 0.0864% 1.286% -0.679 5.729 
3 -0.1344% 2.228% -0.102 5.224 

                                                           
29 SPY has been considered the most liquid ETF and with relatively small tracking errors. We use the mid-point 
of bid-ask prices. 
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Figure 2:  Return time series for holdout and pre-holdout samples 

A. July 1, 1977 – June 30, 1990 B. July 1, 1987 – December 31, 1998 

C. July 1, 1997 – December 31, 2008 D. Major market turbulences 

ID Time / periods Description 

1 
October 19, 1987 

and afterwards 
“Black Monday” 

market crash 

2 
October 13, 1989 

and afterwards 
“Black Friday” market 

crash 

3 
Around October 27-

28, 1997 
Asian financial crisis 

4 
Around August 31, 

1998 
Russian crisis / LTCM 

failure 
5 2000 – 2002 “Internet bubble” 
6 2008 Global financial crisis 

 

4 Empirical Results 

In this section, we present 2R , DM test results and, as a robustness check, visualized 

results on forecasts and underestimation levels. 

4.1 Main Results 

Table 3 reports 2R , regression coefficients, 0b  and 1b , and their heteroskedasticity 

robust standard errors (in parentheses) of the forecast evaluation regressions. The “Relative 

Difference” rows indicate by how much higher, in relative scale, our models’ 2R ’s are than 

those of the corresponding reference models. 
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As can be seen in Table 3, the 2R ’s for all the proposed models, in all time periods, 

are higher than those of their corresponding reference models. We note that this is true 

whether we compute realized volatility using daily returns (as in holdout sample 1) or use the 

intraday returns (as in holdout samples 2 and 3).30 Typically, the 2R ’s of our models are 

around 5% to 10% higher.31 

We also compare 0b  and 1b  in our models and the corresponding models to assess 

model biases [similar to, for example, Andersen, Bollerslev, Diebold and Labys (2003)]. We 

find that our models have no more forecast biases than the corresponding reference models.32 

Table 3:  The forecast evaluation regression results 

Model 2R  0b  1b  

Holdout Sample 3:  July 1, 2007 – December 31, 2008 

Model 1 0.566 0.003 (0.001) 0.906 (0.064) 
GARCH(1,1) 0.523 0.0035 (0.001) 0.913 (0.070) 

Relative Difference +8%   
 

Model 2 0.505 0.0041 (0.00098) 0.86 (0.067) 
RiskMetrics 0.479 0.0041 (0.001) 0.88 (0.069) 

Relative Difference +5%   
 

Model 3 0.562 0.0043 (0.00093) 0.88 (0.066) 
Moving Average 0.532 0.0047 (0.00090) 0.86 (0.065) 

Relative Difference +6%   

                                                           
30 Our result is consistent with that of AB, in that 2R ’s for the volatility models are higher when intraday 
returns are used for realized volatility. For our purpose, however, the absolute magnitude of the 2R ’s are not of 
concern. 
31 We are not aware of any test that can assess the statistical significance of the difference in 2R ’s within the 
volatility literature. One can interpret the reported differences in the 2R ’s as the differences in economic 
significance of the volatility forecasts [see AB and Andersen, Bollerslev, Diebold and Labys (2003)]. 
32 They provide three pieces of evidence:  1) The t-tests on 0b  and 1b ’s differences from 0 and 1, respectively, 

within the evaluation regressions give similar conclusions for our models and the corresponding reference 
models (although 0b  and 1b  may not accurately evaluate model bias for the reason discussed in Footnote 25); 

2) The z-tests on differences between 0b  and 1b  of our and corresponding models, assuming model 

independence [see Clogg, Petkova and Haritou (1995)], show no significant differences; and 3) The tests of 
Gujarati (2003, pp. 306-310) with heteroskedasticity robust standard errors show no significant differences 
between 0b  and 1b  of our and corresponding models. 
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Holdout Sample 2:  July 1, 1997 – December 31, 1998 

Model 1 0.386 0.0036 (0.0008) 0.78 (0.08) 
GARCH(1,1) 0.290 0.0026 (0.0012) 0.86 (0.11) 

Relative Difference +32% +0.001 -0.08 
 

Model 2 0.368 0.0018 (0.0009) 0.89 (0.087) 
RiskMetrics 0.347 0.002 (0.0009) 0.86 (0.086) 

Relative Difference +6% -0.0002 +0.03 
 

Model 3 0.313 0.0054 (0.00076) 0.63 (0.08) 
Moving Average 0.299 0.0055 (0.00076) 0.62 (0.08) 

Relative Difference +5% -0.0001 +0.01 

Holdout Sample 1:  July 1, 1987 – June 30, 1990 

Model 1 0.1495 0.0011 (0.0015) 0.71 (0.179) 
GARCH(1,1) 0.1385 0.0005 (0.0015) 0.72 (0.163) 

Relative Difference +8% +0.0006 -0.01 
 

Model 2 0.126 0.0025 (0.00085) 0.486 (0.091) 
RiskMetrics 0.124 0.0026 (0.00085) 0.477 (0.090) 

Relative Difference +1.6% -0.0001 +0.01 
 

Model 3 0.122 0.0037 (0.00087) 0.42 (0.1) 
Moving Average 0.119 0.0036 (0.00090) 0.44 (0.1) 

Relative Difference +2.5% +0.0001 -0.02 

Next, we conduct the Diebold-Mariano [Diebold and Mariano (2002), DM] tests on 

the significance of “squared error” differences between our models and the reference models. 

For the sake of brevity, we only include the results for Model 1 and GARCH(1,1).33 For high-

volatility periods’ forecasts, due to small sample size, we conduct exact finite-sample tests, 

the Sign test, and Wilcoxon’s Signed-Rank test (with Binomial and Normal sampling 

distributions, respectively, reported in Panel B of Table 4). Otherwise, we use the asymptotic 

test (reported in Panels A and C of Table 4). 

The MSE for Model 1 (Table 4, Panel A) are smaller in all holdout samples, typically 

by 5%-10%. In holdout samples 2 and 3, they are statistically significant at 1% and 10% 

confidence levels, respectively. The MSE is smaller, but not significantly, in holdout sample 

1, which uses squared daily returns as realized volatility (because intraday returns are not 
                                                           
33 The tables and graphs for other models are qualitatively similar. 
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available). 

We further split the holdout samples into “normal” and high-volatility periods.34 

During high-volatility periods (Table 4, Panel B), the outperformance of Model 1 is 

statistically significant in holdout samples 2 and 3. There is a tie in holdout sample 1, whose 

sample size is very small. During “normal” volatility periods (Table 4.C), Model 1 performs 

better (by the negative sign of the asymptotic test statistics), but not significantly, except for 

holdout sample 3. Thus, the DM tests show that Model 1’s outperformance comes mainly 

from the high-volatility periods, which are exactly when volatility models are needed most 

for risk management. Overall, these tests confirm that Model 1’s forecasts are “closer” to the 

true realized volatility than GARCH(1,1)’s, both in general and in extreme cases. 

Table 4:  Squared errors of volatility forecasts, Model 1 vs. GARCH(1,1) 

A. Full holdout sample MSE of the forecasts 

Holdout 
Samples/Periods 

Model 1 
MSE 

GARCH(1,1) 
MSE 

Difference 
(%) 

DM Asymptotic 
Test Statistics p-value 

3:  July 1, 2007 – 
December 31, 2008 

0.963×10-4 1.072×10-4 -10.17% -3.52 <0.001 

2:  July 1, 1997 – 
December 31, 1998 

0.276×10-4 0.302×10-4 -8.61% -1.44 0.07 

1:  July 1, 1987 – 
June 30, 1990 

1.27×10-4 1.306×10-4 -2.76% -0.54 0.30 

B. DM tests on forecasts during high-volatility periods 

Holdout 
Samples/Periods 

Sample Size 
DM Sign Test 

Statistics 
p-value 

DM Signed-Rank 
Test Statistics 

p-value 

3:  July 1, 2007 – 
December 31, 2008 

65 19 <0.001 -3.35 <0.001 

2:  July 1, 1997 – 
December 31, 1998 

10 2 0.05 -2.50 0.006 

1:  July 1, 1987 – 
June 30, 1990 

7 4 0.77 0.17 0.57 

                                                           
34 We define a day as “high-volatility” if, in holdout samples 2 and 3, the square root of an intraday realized 
volatility is 3% , or, in holdout sample 1, the absolute value of a realized rate of return is 5% . Results are 
robust if we slightly change the thresholds. 
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C. DM tests on forecasts excluding high-volatility periods 

Holdout Samples/Periods Sample Size 
DM Asymptotic 
Test Statistics p-value 

3:  July 1, 2007 – December 31, 2008 315 -1.70 0.044 
2:  July 1, 1997 – December 31, 1998 370 -0.26 0.39 

1:  July 1, 1987 – June 30, 1990 750 -0.57 0.28 

4.2 Robustness Check 

To ensure that the results in Section  4.1 are not statistical artifacts, we perform a 

robustness check by plotting, in Figure 3, the model forecasts vis-a-vis realized volatility for 

all holdout periods.35 This also facilitates evaluation of model underestimation levels during 

high-volatility periods.  

Throughout Figure 3, the forecasts of Model 1 are the blue solid line with triangle 

markers; those of GARCH(1,1) are the red solid line (with no markers), and realized 

volatility is the green dashed line. Within each period, the graph on the left plots both 

models’ forecasts and realized volatility with vertical axis labeling on the left, and plots the 

actual daily rates of return (as a grey line) with vertical axis labeling on the right. We 

highlight the periods with high volatility by (red) circles. The graph on the right depicts the 

forecasts during the periods with the highest 5% realized volatility. We provide data of 

forecasts, realized volatility, underestimation levels, and actual daily rate of returns during 

high-volatility periods, at the bottom. 

As shown in Figure 3, while Model 1’s forecasts are close to those of GARCH(1,1) in 

“normal” periods, during high-volatility periods they are consistently higher, typically better 

by 10%-20%, than the GARCH(1,1) forecasts that typically underestimate realized volatility 

by 30%-60%. We note that this is true whether the realized daily return is positive or 

negative. 

                                                           
35 We also did another robustness check, by using averages of squared daily returns in the following 5 days as a 
measure of realized volatility, following Boudoukh, Richardson and Whitelaw (1997). The results (not shown 
here) are similar. 
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Figure 3:  Forecasts in holdout samples, Model 1 vs. GARCH(1,1) 

A:  Holdout Sample 3, July 1, 2007 – December 31, 2008 

Date (Model 1 
Forecast)1/2 

Underesti-
mate by 

[GARCH(1,1) 
Forecast]1/2 

Underestim
ate by 

(Realized Volatility)1/2 
(intraday return) 

Realized Rate 
of Return 

Oct. 10, 2008 4.50% 65% 4.10% 68% 13% -1.18% 
Oct. 08, 2008 4.30% 46% 4.00% 49% 7.90% -1.14% 
Oct. 24, 2008 4.40% 43% 4.30% 44% 7.70% -3.51% 
Oct. 27, 2008 5.00% 31% 4.60% 36% 7.20% -3.23% 
Oct. 16, 2008 6.20% 11% 5.20% 26% 7% 4.16% 
Oct. 13, 2008 4.60% 32% 3.90% 43% 6.80% 10.96% 
Jan. 22, 2008 1.60% 76% 1.50% 77% 6.60% -1.11% 
Nov. 21, 2008 5.10% 22% 4.70% 28% 6.50% 6.13% 
Oct. 23, 2008 5.20% 19% 4.90% 23% 6.40% 1.26% 
Oct. 28, 2008 4.40% 31% 3.70% 42% 6.40% 10.25% 
Sep. 29, 2008 2.50% 58% 2.40% 60% 6% -9.20% 
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B:  Holdout Sample 2, July 1, 1997 – December 31, 1998 

Date (Model 1 
Forecast)1/2 

Underestim
ate by 

[GARCH(1,1) 
Forecast]1/2 

Underestima
te by 

(Realized Volatility)1/2 
(intraday return) 

Realized Rate 
of Return 

Oct. 28, 1997 3.20% 33% 3.00% 38% 4.80% 4.99% 
Oct. 15, 1998 1.80% 59% 1.50% 66% 4.40% 4.09% 
Oct. 08, 1998 1.90% 56% 1.70% 60% 4.30% -1.16% 
Sep. 01, 1998 2.60% 35% 2.60% 35% 4.00% 3.79% 
Aug. 31, 1998 1.60% 59% 1.50% 62% 3.90% -7.04% 

C:  Holdout Sample 1, July 1, 1987 – June 30, 1990 

Date (Model 1 
Forecast)1/2 

Underestima
te by 

[GARCH(1,1) 
Forecast]1/2 

Underestima
te by 

(Realized Volatility)1/2 
(intraday return) 

Realized Rate 
of Return 

Oct. 19, 1987 2.60% 89% 1.90% 92% --  -22.83% 
Jan. 08, 1988 1.20% 83% 1.20% 83% -- -7.01% 
Oct. 13, 1989 0.61% 90% 0.84% 87% --  -6.32% 

5 Conclusions and Future Work 

Market portfolio’s return volatility models are vital to financial risk management. 

Within an equilibrium framework, we analyze two families of such models:  one is a 

deterministic function of time, and the other is an inverse function of the market portfolio 
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value (i.e., a CEV model). We show in theory that, under the common practice of assuming 

constant mean rates of return, the second family of volatility models has the features of 

allowing more flexible risk aversions and capturing “asymmetric volatility” [Black (1976)]. 

Thus, the second family tends to have more flexibility to approximate markets and, thus, 

better ability to forecast than the first family. 

We further introduce an implementation method of proposing new parametric 

specifications in the second family (the proposed models), by combining the CEV 

formulation and the parameterizations of popular volatility models representing the first 

family (the reference models). We estimate them using Maximum Likelihood. We assess 

their forecasts by three out-of-sample evaluations and find that, while as easy to implement as 

the corresponding reference models, the proposed models have higher predictive power 

during both normal and high-volatility periods. 

This paper highlights the importance of modeling the volatility and mean of the 

market portfolio’s rates of return in internally and equilibrium consistent manners. We find 

empirical evidence that substantiates both our theoretical analysis and our approach of 

identifying new, predictive, equilibrium-based volatility models of the market portfolio rates 

of return. 

Our approach allows us to progress with exploring the family of equilibrium-

consistent models. Particularly, we can model a stochastic process for equilibrium-based 

mean rates of return together with a volatility process. We can also model equilibrium 

interest rates and dividend yields, as observable or implied variables, and require them to be 

internally consistent. A notable example of this modeling strategy is the “GARCH-in-Mean” 

model in Bollerslev, Engle and Wooldridge (1988). For these purposes, we might also require 

other evaluation methodologies. Moreover, we can model market indices, such as S&P500, as 

a noisy proxy of the market portfolio within an Incomplete Information Equilibrium [IIE, see 
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Feldman (2007)]. This approach also specifies endogenously equilibrium consistent volatility 

structures. Finally, we can extend evaluations to forecasts within longer time horizons.36 

 
Appendix A. MLE for Model 1 and Model 3 

For Model 3, we obtain MLEs for ( , )S  as follows. We first write down the process 

for the rate of return, 1ty  , 
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Ignoring the constant terms, the log-likelihood functions for the parameters given one 

observation, and for the parameters given the N-day sample, respectively, are 
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From the first-order condition of maximizing L , we have 
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and, consequently, obtain Model 3, described in Equation (19). We could have fine-tuned N  

(for instance, using cross-validation) to produce better forecasts, but in this study we set 

10N   for simplicity. We note that Model 3 can be thought of as a “weighted moving 

average” model, weighted by the past prices, and thus is very similar to the MLE of its 

                                                           
36 For example, we could test the “10-(trading) days-ahead” volatility forecasts [see, for example, Christoffersen 
and Diebold (2000)]. 
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reference model, the “moving average” model (i.e., constant 2  and  ). 

We obtain the standard error of the estimators, from their asymptotic covariance 

matrix, 1ˆ( )N  , where ̂  is the estimator of the information matrix. We obtain ̂  from the 

sample version of the expected Hessian matrix, 
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where 
a

  denotes asymptotic equivalence. We note the similarity of the above asymptotic 

covariance matrix, Equation (A4), to that of the constant volatility model. From the standard 

error of Ŝ , we can find the standard error of 2
1
MLEˆt  , which is ML2 E

1

2
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For Model 1, we basically follow the estimation procedures developed in Engle 

(1982) and Bollerslev (1986). In a general form, denoting   as the unknown parameters to 

be estimated, we have the process for the rate of return, 1ty  :37 
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where ( )m   and ( )s   are differentiable functions. Using Equation (A5), we can take the first 

derivative of 1t   and 2
1t   w.r.t.  , 
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Ignoring the constant terms, the conditional log-likelihood functions for   given one 

                                                           
37 In this study we only consider the first-order relationships, i.e., 2

1 1( , )t t    depend on 2( , )t t   only. 
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observation and for   given the whole sample, respectively, are 
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where D  is the sample size. Taking the partial derivative of tl  w.r.t.   gives the score 

(vector) for one observation: 
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Equations (A6) and (A8) altogether define an iterative procedure to find the score (vector) for 

the whole sample.  

We use a numerical procedure to maximize the log-likelihood function L  in Equation 

(A7). As in Engle (1982) and Bollerslev (1986), we apply the Berndt, Hall, Hall and 

Hausman (1974, BHHH) algorithm to find the MLEs.38 By the law of iterated expectations 

and after simplifying, the expected Hessian matrix is 
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where “ ' ” is the “transpose” operator. The sample version of (A9) is 
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the robust asymptotic covariance matrix is 1 1ˆ ˆ ˆH VH  . 

We set the initial value, 2
1 , to be the long-run mean of 2

t , 2E t . 39  By the 

                                                           
38 We implement the BHHH algorithm by supplying an “Outer Product of Gradient” estimator of the Hessian 
matrix to a built-in optimization procedure in MATLAB. 
39 In the implementation of GARCH(1,1), we set the initial value as 0
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assumptions of i.i.d. ,t t   and continuous compounding, we take the unconditional 

expectation on both sides of Equation (13) and obtain 
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Further assuming that 0M  is finite, that the unconditional variance of 2
t  exists, and that 

2E 2t  , asymptotically (i.e., t  ) we have 
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In the implementation, we use Equation (A11) as 2
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